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QUOTIENT POLYTOPES OF CYCLIC POLYTOPES 
PART I: 

STRUCTURE AND CHARACTERIZATION* 

BY 

A. ALTSHULER AND M. A. PERLES 

ABSTRACT 

We investigate the quotient polytopes C/F, where C is a cyclic polytope and F 
is a face of C. We describe the combinatorial structure of such quotients, and 
show that under suitable restrictions the pair (C,F) is determined by the 
combinatorial type of C/F. We describe alternative constructions of these 
quotients by "splitting vertices" of lower-dimensional cyclic polytopes. Using 
Gale diagrams, we show that every simplicial d-polytope with d + 3 vertices is 
isomorphic to a quotient of a cyclic polytope. 

Introduction 

The cyclic polytopes, which were discovered early this century by Carathedory 

[3, 4] and more recently rediscovered by Gale [5] and Motzkin [12], play an 

important role in the combinatorial theory of convex polytopes. The main 
reason for this is the fact that they form the simplest case of simplicial neighborly 
polytopes, which, as proved by McMullen [10], have the largest number of faces 

of each dimension, among all the polytopes of the same dimension and with the 
same number of vertices. For a short history and further information about cyclic 

polytopes the reader should consult [6]. 
In a series of papers, the first of which is presented here, we intend to 

investigate a certain family of polytopes that is derived from the cyclic polytopes, 

namely, the quotient polytopes of cyclic polytopes. For every polytope P and for 

every face F of P, the quotient P/F is a polytope whose face-lattice is isomorphic 
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to the sublattice {G : F C G C P} of the face-lattice of P. When F is a vertex of P, 

the quotient P/F is simply the vertex figure of P at F. The notation P/F for 

quotients was first introduced by McMullen and Shephard in [11, page 71]. The 

concept itself appears already in [6, exercise 3.4.10 (iii)]. 

Quotient polytopes of cyclic polytopes were investigated also by Hering [9] 

and by Sch6nwald [14]. The approach and purpose of Hering and Sch6nwaid are 

completely different from ours, and few of their results overlap with ours. We 

feel that a brief description of the different approaches would be appropriate at 

this point. 

The combinatorial structure of an (n - Q-dimensional cyclic polytope C with 

n vertices is shown by Hering [9] to be reflected in the alternating binary 

sequence d = ( 0 ,  1 ,  0 ,  �9 �9 �9 ) of length n together with the set of all the alternating 

subsequences of d of length r, and a certain partial order relation defined on 

this set. The structure of a quotient of C is similarly reflected in a sequence d~ 

that is obtained from d by omitting certain digits. Moreover, every such binary 

sequence corresponds to a quotient of a cyclic polytope (Hering uses the term 

"binary polytope" for what we call a quotient polytope of a cyclic polytope). 

This is proved by Hering by means of his general "simplex diagram" method. 

Using this approach Hering proves the Upper Bound Theorem for quotient 

polytopes of cyclic polytopes, and a certain generalization of the inequality of 

the arithmetic and geometric means. 
Sch6nwald [14] follows Hering's approach, and his main interest is to develop 

a more direct geometric realization of the binary sequence d~ as a convex 

polytope. For this purpose he considers the sequence d~ as obtained from a 
smaller alternating binary sequence d2 -- (0, 1, 0, 1, �9 �9 �9 ) by addition of several 0 
and 1 digits. (d2 is obtained from d~ by replacing each block of O's (resp. l 's) by a 

single 0 (resp. 1)). A realization of this structure as a convex polytope, given by 

Sch6nwald, is obtained by considering a cyclic polytope C2 that realizes the 

sequence d2, replacing each vertex of (?2 by a suitable simplex, and taking the 

convex hull. In Section 6 we deal with Sch6nwald's construction from our point 

of view. 

The main topics of our investigation are: the reconstruction of C and F from 

C/F, where C is a cyclic polytope and F a face of C;  characterizations of 

quotients of cyclic polytopes; the combinatorial automorphisms of C/F; enu- 

meration of combinatorial types of quotients C/F; the degree of neighborliness 
of C/F; the .f-vector of C/F, and the effect of "slight" changes in F on the 

[-vector of C/F. 
The first three sections of this paper serve as an introduction to the entire 
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work. Here  we define the basic terms and concepts that will be used later. In 

Section 1 we define quotients of convex polytopes and simplicial complexes. In 

Section 2 we define missing faces, and establish some of their properties. The 

notion of a missing face turns out to be a powerful tool for investigating 

simplicial polytopes and more general simplicial complexes. We feel that the 

usefulness of this concept goes beyond the realm of this work. 

In Section 3 we describe the cyclic polytopes and their quotients, which form 

the topic of the present investigation. We show that every quotient of a cyclic 

polytope is combinatorially isomorphic to a quotient C/F, where C is an 

even-dimensional cyclic polytope, and F is a face of C, such that the set vert F is 

"separated"  on the moment  curve by the remaining vertices of C. This enables 

us to restrict our attention to such quotients C/F, where C is even-dimensional 

and F is "separated".  The advantage of C being even-dimensional is that we can 

regard the vertices of C as ordered cyclically on the moment curve. 

In Sections 4 and 5 we investigate in detail the quotients C/F, where 

C = C(v, 2m) is a cyclic 2m-polytope with v vertices, and F is a "separated"  

face of C, I v e r t F l = j .  In Section 4 we deal mainly with the case where 

v _-> 2m + 3 and j < m. We show that in this case C and F can be essentially 

reconstructed from C/F, and we also determine the combinatorial automor- 

phisms of C/F, 
In Section 5 we deal with the remaining cases, where v =< 2m + 2 or j = m 

(j > m is impossible). It turns out that in these cases C/F is (isomorphic to) a 

direct sum of one or more simplices. 

In Section 6, which concludes the first part of this work, we deal with 

Sch6nwald's construction mentioned above from our point of view; we also 

describe it in terms of Gale-diagrams. One of the few results common to our 

work and to [9] is Theorem 6.9, which says that every simplicial d polytope with 

d + 3 vertices is combinatorially isomorphic to a quotient of a cyclic polytope. 

A brief remark about the origins of this work is appropriate. In 1971 the first 

author investigated the vertex figures of cyclic polytopes (see [1]). The second 

author solved the questions left open by the first author, and suggested dealing 

with the more general topic of quotient polytopes of cyclic polytopes. The 

combined effort started when we met in August 1972, and led to the series of 

papers of which the first is presented here, and which includes the results about 

vertex figures obtained in 1971 by the first author while at Temple University, 

Philadelphia, Pa. 
Our terminology and notation follows [6]. To denote the end of a proof we use 

the sign F-1. 
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1. Quotients of simplicial complexes and convex polytopes 

Let K be a convex polytope, and p a vertex of K. The vertex figure Kp of K at 

p is defined [6, p. 49, ex. 8] as the intersection of K with a hyperplane H which 

strictly separates the vertex p from the remaining vertices of K. The face-lattice 

~(Kp)  of Kp is isomorphic to the upper segment of ~T(K) determined by {p}. If 

�9 " E i f (K) ,  p E ",P', and qP' ( =  ~" n H )  is the corresponding face of Kp, then 

dim ",P" = dim ~ - 1. 

Repeated application of the above construction establishes the following: 

If K C R ~ is a convex polytope, and ~ a k-face of K, then there exists a 

polytope K .  whose face-lattice is isomorphic to the upper segment of ~ ( K )  

determined by ~.  If �9 E ,~(K), cp C ~ ,  then the corresponding face ~ '  of K~, 

satisfies d i m ~ '  = dim~" - d i m ~  - 1. K .  can be realized as the intersection of K 

with a suitable (d - k - 1)-flat. K . ,  and any polytope combinatorially equivalent 

to K~,, is called a quotient polytope (or simply a quotient) of K determined by ~,  

and is denoted by K/~P. From the definition it follows that a quotient of a 

quotient of K is again a quotient of K. An alternative construction of quotient 

polytopes, using duality, may be found in [11, pp. 71-72], and in [6, exercise 

3.4.10 (iii)]. 

If K is a simplicial polytope, then the boundary complex ~ ( K )  

( =  .~(K)\{K}) is a simplicial complex. Since we shall be dealing only with 

combinatorial properties of simplicial polytopes, we regard each face as its set of 

vertices. Under  this point of view, ~ ( K )  becomes an abstract simpliciai 

complex, i.e., a finite collection of sets, which contains together with any element 

S all the subsets of S. 

If @ is an abstract simplicial complex, we shall refer to its elements (cells) as 

"faces of ~ " .  The facets of ~ are its maximal faces (maximal with respect to 

inclusion). If F is a face of ~, let d i m F = l F l - 1 ,  and let d i m ~ =  

max{d imF:  F E  ~}. We call F a d-face, or @ a d-complex, if d i m F =  d, or 

dim ~ = d, respectively. ~ is a pure (homogeneous) d-complex if all its facets 

are d-faces. Thus the boundary complex of a simplicial d-polytope is a pure 

(d - 1)-complex. If J is a face of ~, define the abstract quotient complex ~/J  by 

(.) ~ / J = { S \ J : S E ~ , J C S } = { T : T O J = O ,  T U J E ~ } .  

~ /J  is again an abstract simplicial complex. (If J ~  ~, then (*) yields ~/J  = 0. 
We shall occasionally use the "quot ient"  @/J, as defined by (*), where ~ is an 

arbitrary collection of finite sets, and J is any finite set.) 

~/J  is, in fact, the link of J in ~ (see [6, page 40]). The complex ~/J  is 



Vol. 36, 1980 QUOTIENT POLYTOPES 101 

naturally isomorphic to the upper segment of 9 determined by J, under the 

correspondence T ~ T U J. Thus, if K is a simplicial polytope and ~ E ~ ( K ) ,  

then ~ (K/~)  is naturally isomorphic to ~ (K)/~. Therefore,  instead of dealing 

with the "geometr ic"  quotients K/~,  we shall study the "abstract"  quotients 
(K)/~. 

2. Missing laces 

Missing faces, defined below, play a central role in this paper. They seem to be 

a potentially useful tool in the study of simplicial polytopes and complexes in 

general. 

DEFINrnON 2.1. Let 9 be an abstract simpliciai complex. A set M of vertices 

of 9 is a missing face (of 9 )  if M ~  9,  but every proper subset of M belongs to 

9.  We denote the set of missing faces of 9 by mf 9.  

If follows from the definition that every missing face of 9 contains at least two 

vertices (unless 9 = 0 ) ,  that a missing face cannot properly include another 

missing face, and that mf 9 ~ 0 ,  unless 9 contains all subsets of vert 9,  i.e., 

unless vert 9 ~ 9.  

If K is a simplicial polytope, then we write m f K  for m f ~ ( K ) ,  and call the 

elements of mf K missing faces of K. (Note that under this convention, if K is a 

d-simplex, d => 1, then vert K E mf K.) 

The most important property of mf 9 is that 9 can be reconstructed from 

vert 9 and mf 9,  as follows: 

L E M ~  2.2. If 9 is an abstract simplicial complex and S C vert 9,  then S E 9 

iff no subset of S belongs to mf 9.  

PROOF. If S E 9  and T C S ,  then T E g ,  and therefore T ~ m f g .  Con- 

versely, if S C vert 9 but S ~  9,  let M be a minimal subset of S which is not in 

9.  Then M E mf 9.  []  

The boundary complex ~ (K) of a simplicial polytope K can be reconstructed 

from mf K alone, as follows: 

LEMMA 2.3. If K is a simplicial polytope, dim K _-> l, then every vertex of K 

belongs to a missing face of K. 

PROOF. If p E vert K, let F be a facet of K which does not contain p. Then 

{ p } U F ~  ~ ( K ) .  Let T be a minimal subset of F such that {p}U T ~  5~(K). 

Then {p} U T E mf K. []  
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THEOREM 2.4. If K is a simplicial polytope, then ~(K) can be reconstructed 
from mfK.  

PROOF. I f K = O ,  then ~ ( K ) = O ,  m f K = { ~ } . I f d i m K = 0 ,  then ~ ( K ) =  

{O}, m f K  = 0 .  If d i m K  => 1, then vert K = U m f K ,  by Lemma 2.3, and ~ ( K )  

can be reconstructed by Lemma  2.2. []  

For an abstract simplicial complex ~, denote by max ~ the set of facets of ~.  

Note that ~ is the set of all subsets of elements  of max @, and vert ~ = U @  = 

U m a x  5~. It follows that if @, 9 '  are abstract simplicial complexes, vert ~ = V, 

vert 9 '  = V', and ~o : V--~ V'  is a bijection, then ~ induces an isomorphism 

between ~ and 9 '  ifI ~0 induces an isomorphism between max ~ and max ~ ' ,  or 

between mf50 and m f ~ '  (i.e., ~'={~o(S):$~}~-*max~'={cp(F):FE 
max 9}  ~ mf ~ '  = {g, (M)  : M fi~ mf ~}). 

Also note that if ] is a face of 9 ,  then m a x ( ~ / J )  = (max ~) / J .  This identity 

will be used in the sequel. 

3. Cyclic polytopes 

The momen t  curve M~ in R ~ (d => 2) is defined parametrically by 

x 0 - )  = (7 ,~-2, .  � 9  ~ -" ) (-~<~- <~). 

A cyclic d-polytope with v vertices C(v, d) (v > d) is the convex hull of v 

distinct points on M~ (or any polytope combinatoriaily isomorphic to it). C(v, d) 
is a simplicial [d/2]-neighborly polytope, i.e., every [d/2] vertices of C(v, d) 
determine a face. For  a detailed t reatment  of cyclic polytopes see [6, Section 4.7] 

and [11, pp. 82-90]. 

Now suppose C(v, d) = cony{x, : 1 -<_ i _--- v}, where x, = x(r~) = (~-,, r~,--  -, ~-:) 

and z, < ~'2<""" < ~'~. The combinatorial  structure of C(v, d) is determined by 

the following rule, known as "Ga le ' s  evenness condition": 

Let V = {1 , . . . ,  v}. If $ C V, then {x, : i E $} is a facet of C(v, d) iff IS I = d, 

and 

between any two members  of V \ S 

(*) there is an even number  of members  of S. 

Now, if $ C V and v • 5, then condition (*) for V and $ is clearly equivalent 

to the corresponding condition for $\{v} and V\{v}, i.e., between any two 

members  of (V\{v})\(S\{v}) there is an even number  of members  of S\{v}. 
Therefore,  if d - > 3 ,  then max~(C(v,d))/{x~} is naturally isomorphic to 
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max ~(C(v  - 1, d - 1), or, in o the r  words,  the ver tex figure of C(v, d) at xv is of 

type C(v - 1, d - 1). The  same  holds for  the ver tex figure of C(v, d) at x~. 

There fo re ,  every quot ient  of an odd d imensional  cyclic po ly tope  C ( v -  
1,2m - 1) is also a quot ient  of an even d imensional  cyclic po ly tope  C(v, 2m ). So 

f rom now on we shall restrict our  a t tent ion to the case where  d = 2m is even.  

In order  to facil i tate the combina tor ia l  manipula t ion  of the bounda ry  complex  

of C(v,2m), we in t roduce  an abst ract  complex  Cr as follows: 

Let  V = { i , , . . . , i v}  be  a finite set of integers,  i~ < i2< " �9 < iv, v _-> 3. The  

natural  order ing of V induces a cyclic s t ructure  C(V), as follows: C(V) is an 

undirected graph with ver tex set V. The  edges of C(V) are the pairs {i~, i~+~} 

(1 < v < v) and {iv, i,}, 

Let  S be  a n o n e m p t y  subset  of V. A subset  B of S is a block of S, if the 

subgraph  of C(V) spanned  by B is a connec ted  c o m p o n e n t  of the subgraph  of 

C(V) spanned  by S. A block B is said to be  even (odd) if I B [ is even (odd). 

Def ine  vv(S) (briefly: v(S)) to be  the n u m b e r  of odd blocks  of S @ ( 0 )  = 0). 

Clearly 0 < v(S) < IS[ ,  and v(S)=ISt  (mod 2). If v (S)  = I SI then we say that  S 

is separated. 

DEFINITION 3.1. ~ ( V ,  2 m )  = {T : ( 3 S  C V)[T C S & I SI = 2m & v(S) = 01}. 

Clearly 

maxqC(V,2m)={SCV: lS[=2m and v ( S ) = 0 } .  

THEOREM 3.2. I f V = { 1 , ' " , v } ,  v > d = 2 m  >_-2, then ~ r  

phic to ~(C(v, d)) under the correspondence i---~ x,. 

PROOF. It SUflicies to show that  max cr 2 m )  is i somorphic  to 

max ~ (C(v, 2m )). Suppose  S C V. If S E max ~ (V, 2m ), then S clearly satisfies 

(*), hence  {xi : i E S} ~ max ~ (C(v, d)). Converse ly ,  if {x~ : i E S} E 

max ~(C(v, d)), then S C V, IS [ = 2m and all b locks  of S which contain nei ther  

1 nor  v are even,  by (*). But  S has at most  one  block which contains  1 or  v or  

both ,  the re fo re  v(S) =< 1. Since v(S) =- IS I - 0 (rood 2), we conclude that  v(S) = 
0, S E max qg(V, 2m) .  [ ]  

The  i somorph i sm type  of qg (V, 2m ) clearly depends  only on [ V I and m, not on 

the par t icular  choice of V. T h e r e f o r e  we shall usually assume that  V = {1 , . - . ,  v}. 

Every  a u t o m o r p h i s m  of the graph C(V) induces an a u t o m o r p h i s m  of c~(V, 2m ). 

The  g roup  of a u t o m o r p h i s m s  of C(V) is a dihedral  g roup  of o rder  2v (v 

ro ta t ions  and v reflections).  W e  shall see la ter  that  if v => 2m + 3, then the only 

a u t o m o r p h i s m s  of c~ (V ,2m)  are those induced by a u t o m o r p h i s m s  of C(V). 
C(v, 2m ) can be real ized as the convex hull of v evenly spaced  points  on the so 
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called trigonometric moment curve (see [6, p. 67, excercise 4.8.23]). In this 

realization all the combinatorial automorphisms of C(v, 2m) are induced by 

geometric symmetries (isometries). 

From this point on we leave behind the polytopes C(v, d) and deal mostly with 

the abstract complexes ~(V, 2m) and their quotients. 

THEOREM 3.3 (Shephard's condition [15]). Suppose l V I = v > 2m >= 2, and 
S C V. Then S is a face of ~(V, 2m) if[ ISl+ u(S)<=2m. 

PROOF. (The proof given here is simpler than Shephard's original proof.) 

Suppose S C V. It is easily checked that if i E V\S,  then v(S O{i}) = ~,(S)-- 1. 

Therefore I s l +  u ( s ) + 2 = > l s  u{ i} /+  ~,(S u { / } ) - - I s / +  ~,(S) and therefore, if 

S C T C V ,  then IT[+v(T)- ->[S I+v(S) .  

If T~maxCC(V,2m),  then I T l + ~ , ( T ) = 2 m + 0 = 2 m .  Therefore, if 

IS I+ v(S) >2m,  then S is not a subset of a member of max ~(V, 2m), i.e., S is 

not a face of ~(V,2m) .  

Now suppose that ISI+v(S)<=2m. If I S l + v ( S ) < 2 m  and i ~  V\S ,  then 

IS U{i}/+ v(SO{i})<=2m. If [Sl+ v (S )=2m and IS l<2m,  then v ( S ) > 0 .  If 

i E V \ S  and i is adjacent to (at least one) odd block of S, then it is easily 
checked that v(S U{i}) = v ( S ) -  1, hence [S U{i}/+ v(S U{i}) = 2m. 

Thus we can enlarge S step by step until we reach a set T,S C T, with 

IT I = 2m and I Tl+ v(T) = 2m, hence v(T) = O, T E  max ~(V, 2m). Therefore 
S is a face of ~(v, 2m ). [] 

THEOREM 3.4. Suppose I VI = v > 2 m  _->2. The missing faces of ~ ( V , 2 m )  
are precisely the separated (m + 1)-subsets of V. 

PROOF. If S is a separated (m + 1)-subset of V, then I S I+ v(S)= 2m +2 > 
2m, hence S is not a face of ~(V, 2m ); but every proper subset of S is a face of 

~(V, 2m), by Shephard's condition. Hence S is a missing face. 
If T C V  is a missing face of ~(V,2m) ,  then IT l+v(T)>=2m+2,  and 

I T\{i} l+ v(T\{ i} )<2m for all i E T. It follows that I Tl+ v ( T ) =  2m +2,  and 

v(T\{i})= v ( T ) - I  for all i E T .  If a block B of T has length =>2, then the 

removal of a suitable point i of B will increase ~, i.e., v(T\{i})= v(T)+  1. 

Therefore all blocks of T are singletons, i.e., I TI = v(T) = m + 1, i.e., T is a 

separated (m + 1)-subset of V. [] 

In the next sections we will classify the quotients ~(V, 2m)/J, where J C V. 

The classification will enable us to determine easily, for any two given admissible 

triples (V,m,J) ,  (V' ,m' ,J ' ) ,  whether or not c~(V, 2m)/J is isomorphic to 
(V', 2m ')/J'. 
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If J is not a face of ~ ( V , 2 m ) ,  then ~(V ,  2m) /J  = 0 ;  if J E max ~ ( V , 2 m ) ,  

then qg(V, 2m) /J  = {0}. We therefore assume that J is a face of ~(V,  2m),  i.e., 

t J [ +  v ( J ) < 2 m ,  and that [ J l < 2 m .  

The isomorphism type of ~(V ,  2m) /J  remains unchanged if we replace J by 

its image under an automorphism (rotation or reflection) of the circuit C(V) .  We 

may therefore assume, whenever  convenient, that V = {1,- . - ,  v}, 1E J, and 

v E J, unless J = 0 .  Under  this convention, every block of J in V is a sequence 

of consecutive numbers.  

Now we will show that every quotient ~(V,  2m )/J is isomorphic to another  

quotient ~ ( V ' , 2 m ' ) / J ' ,  where J '  is a separated subset of V'. 

THEOREM 3.5. Suppose V = { 1 , - ' - , v } ,  [ V l = v > 2 m >  j, J C V ,  [J l=j ,  

j + v(J)  <- 2m, 1 E J. Let J'  be the subset of J which contains the smallest element 

of each odd block of J, [ J ' [ =  v(J). Let V ' =  V \ ( J \ J ' ) = ( V \ J ) U J ' ,  and let 

2 m ' =  2m - [ J \ J ' l  = 2 m  - ( j -  v(J))  (notice that m '  is an integer). Then 
cr (V, 2m )/J = c4 (V' ,  2m ')/J'. 

LEMMA 3.6. Suppose V = {1 , ' - - ,  v}, IV[ = v > 2 m .  I f  I C V consists of two 
consecutive numbers, then cO(V, 2m) / I  = cO(V\ I, 2(m - 1)). 

PROOF. Because of the cyclical symmetry of ~ (V, 2m ), it suffices to consider 

the case where I = { v -  1, v}. This case is disposed of by applying twice the 

remark that follows (*) at the beginning of this section. [] 

PROOF OF THEOREM 3.5. J can be represented as a disjoint union J = 

Jz U �9 �9 �9 U J, U J ' ,  where t = i ( ] -  v(J)),  and each 3", (1_-< i _-< t) consists of two 

consecutive numbers.  Therefore  

qg ( V, 2m )/J = c~ ( V, 2m )/(Jl U . . . O J, O J ' )  = ( - - - ( (~ (V,  2m )/J1)/J2)/" " /J,)/J'. 

By a repeated application of L e m m a  3.6 we obtain: 

( )/ ~ ( V , 2 m ) / J = q ~  V \  U J, 2 ( m - t )  J ' = c ~ ( V ' , 2 m ' ) / J ' .  [] 
i = 1  

A particular case of Theorem 3.5 is the following: 

COROLLARY 3.7. Using the notation of Theorem 3.5, if vv (J) = 0, then j = I J I 

is even, and cd(V, 2m )/J is isomorphic to cd (V \J ,2m - j). 

Theorem 3.5 allows us to restrict our  attention to the case where J is a 

separated subset of V, and IJI  = v ( J ) -  -< m. 
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THEOREM 3.8. If I V I = v --> 2m + 3 _-> 5, then the group of automorphisms of 
cr 2m) is a dihedral group of order 2v, i.e., the only automorphisms of 
cO(V, 2m ) are those induced by automorphisms of the graph C(V). 

PROOF. We will show that the edges of C(V)  can be defined in terms of 

~ ( V , 2 m ) ,  provided v _->2m +3.  The missing faces of ~(V,  2m) are clearly 

defined in terms of ~g(V,2m) (see Definition 2.1). 

By Theorem 3.4 the missing faces of qg(V,2m) are exactly the separated 

(m + 1)-subsets of V. Therefore,  if a, b E V are adjacent in C(V),  then no 

missing face of ~?(V,2m) contains both a and b. But it is easy to see that if 

a, b E V are not adjacent in C(V),  then there exists a separated (m + 1)-subset 

of V which contains both a and b. (At this point of the proof we need the 

assumption v _-> 2m + 3.) Hence {a, b} is an edge of C(V)  iff no missing face of 

~ ( V , 2 m )  contains both a and b. 

Therefore,  every automorphism of cO(V, 2m ) preserves edges of C(V),  or, in 

other words, is induced by an automorphism of C(V). [] 
In Sections 4 and 5 we will see that if ~ = cr (i = 1,2), IV~I_-- > 

2m ~ + 3 => 5, I Jl I < m ~ and Ji is separated in V~ for i = 1, 2, then ~1 is isomorphic 

to ~2 iff [Vll = [V21, m, = m2, IJ11 = IJ2l and ./2 is the image of J~ under an 

isomorphism between C(V1) and C(V2). 
In Section 5 we will give a complete description of the quotients cO(V, 2m )/J, 

where J is a separated subset of V and I V I -<2m + 2  or I JI = m. 

4. The structure of ~(V ,2m) /J  ( v > 2 m  +3,  j < m )  

In the present section we study the structure of mf(CE(V,2m)/J), the set of 

missing faces of ~(V,2m)/J.  We assume, unless otherwise specified, that 

V = {1,2, . . ., v}, IJl = j < m, v=>2m +1_->3, 

(4.1) 
J is a separated subset of V. 

However,  the main goal of this section is Theorem 4.9, which states that V, m 

and J can be essentially uniquely reconstructed from the quotient complex 

c~(V,2m)/J, provided we know in advance that v > 2m +3  and j < m. Later, in 

Theorem 5.8, we will strengthen this result. We will show that the truth of the 

statement "v  _-> 2m + 3 and j < m "  need not be known in advance, but can be 

decided by inspecting the quotient c~(V,2m)/J. We wiU also describe what 

happens when v_-<2m + 2  or j = m. 
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The elements of V and J will sometimes be referred to as vertices, having in 

mind the graph C(V), and by saying that two vertices of V are adjacent we 

mean that they are adjacent in the graph C(V). 
In order to study the missing faces of ~(V,2m) /J  we define the concept of a 

chain. This concept will play a central role in the entire work. 

DEFINITION 4.2. Let a, b E V\J .  We say that a - b if there is a sequence 

a = al, a2,. . . ,a, = b (t >= 1) such that for each 1_-< i < t there is a vertex in J 

adjacent to both a, and ai+~. The relation - is easily seen to be an equivalence 

relation in V\J,  and the equivalence classes will be called chains. We will refer 

to these equivalence classes as "chains of V \ J " ,  although, strictly speaking, they 

are defined in terms of both sets V and J. The length of a chain is the number of 

vertices in the chain. A vertex of J that is adjacent to a vertex in a chain (and 

hence to two different vertices, since J is separated in V) is said to be covered by 

the chain. Therefore  the length of a chain exceeds by one the number of vertices 

of J covered by the chain. (The only possible exception, when v is even and J 

contains every second vertex of V, is excluded by condition (4.1).) Two different 

chains R1, R2, are adjacent if there are vertices a E R1, b E RE adjacent in V. A 

set of chains is separated if no two chains in the set are adjacent. 
In Fig. 1 the chains of length > 1 are marked. The sequence of lengths of 

successive chains, starting at the chain of length 3 and moving clockwise, is 3, 1, 

2 , 1 , 1 , 2 .  

Fig. 1. The  vertices in J are black, while those in V\J  are white. The  chains of length > 1 are 
marked.  

LEMMA 4.3. The number of chains in V \ J  is v - 2j. 

PROOF. Assume there are t chains in V\  J, and let rl, r2 , ' - . ,  r, be their 

lengths. Then 

v - j = ~ r i  and j = ~ ( r l - 1 ) = ~ , r i - t ,  
i = l  i = l  i = l  

hence 
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t = ~ r~-j  = v - 2 j .  [] 
t = l  

For the purpose of the next theorem it will be convenient to extend the notion 

of a missing face as follows (see Definition 2.1): 

DEFINITION 4.4. Let ~ be an abstract simplicial complex, and let V be a set 

which includes vert ~. A subset S of V is a missing face of ~ relative to V if 

S ~  ~, but all proper  subsets of S belong to ~. Thus S is a missing face of 

relative to V iff either I SI => 2 and S is a missing face of ~ in the usual sense, or 

ISI = 1 and S C  V\ver t  ~. 

Tr~EOREM 4.5. If  v > 2m + l and S C V\J,  then S is a missing face o1: 
( V, 2m )/J relative to V \ J iff S is a union of m - j + 1 separated chains of V \ J. 

PROOF. Suppose v > 2m + 1 and S C V\  J. By Definitions 2.1 and 4.4, S is a 

missing face of ~(V,2m) /J  relative to V \ J  iff S U J is not a face of ~ ( V , 2 m ) ,  

but for every s E S (S \{s} )UJ is a face of ~(V,  2m). Hence it follows from 

Shephard's condition (Theorem 3.3) that S is a missing face of ~(V ,2m) /J  
relative to V \ J  iff 

I S U J I + v ( S U J ) > 2 m  and (,) 
I(S\{s})uJl+ , ,((s \{s}) u / )_-<2m for every s E S. 

Since both left sides in (*) are even numbers and their difference does not exceed 
2, (*) is equivalent to 

I S U J I + v ( S U J ) = 2 m + 2  and (**) 
I(S\{s})UJl+ ~,((S\{s})UJ)= 2m for every s ~ S. 

This is equivalent to 

I S U J I + v ( S U J ) = 2 m + 2  and 
(***) 

v((S \{s})OJ)= v(S U J ) -  1 for every s E S .  

It follows that if S is a missing face of ~(V, 2m)/J relative to V\J ,  then S U J 

does not contain any even block (every even block of S U J contains at least one 

element s of S, and the removal of s increases the number of odd blocks), in 

every block B of S U J all the evenly-placed (i.e., the second, fourth, etc.) 

elements belong to J and, since J is separated in V, all the oddly-placed (i.e., the 

first, third, etc.) elements of B belong to S. (If an element s E S were 

evenly-placed in B, its removal would increase the number of odd blocks of 



Vol. 36, 1980 QUOTIENT POLYTOPES 109 

S U J.) Note that the restriction v > 2m + 1 together with (***) excludes the 

possibility that S U J = V. 

We conclude that if S is a missing face of qg(C, 2m)/J relative to V\J,  then $ 

does not contain any two adjacent vertices of V, and S is a union of complete  

chains of V \ J ,  no two of which are adjacent. 

On the other hand, if S C V \ J  is the union of a separated set of chains of V \ J  
and I S U J I + v ( S U J ) = 2 m + 2 ,  then it is easily seen that v( (S \{s} )UJ)= 
v(S U J ) - 1  for every s ~ S, and therefore S is a missing face of cs 

relative to V\J.  
Now let S be the union of t separated chains of V\J,  and let rt, r2, �9 �9 ", r, be the 

lengths of those chains. Clearly IS U J I = I Sl + I J I  = J + E:=l r,. The number  

v(S U J )  of odd blocks in S U J equals the number  t of chains in S, plus the 

number  x of elements of J that are not covered by any chain in S. Clearly 

x = j - E~=1 (r~ - 1) = j - E'~=l r~ + t. Therefore  

I S U J l + v ( $ U J ) = ( J + ~ ' ~ r ~ ) + t + ( j - ~ r ~ + t )  ,=~ 

From the preceding arguments it follows that S is a missing face of cs 2m)/J 

relative to V \ J  iff 2j + 2t = 2m + 2, i.e., t = m - j + 1. []  

LEMMA 4.6. If  j < m then vert cs = V\J.  

PROOF. Clearly vert cs C V\J .  If x E V \ J ,  then {x} U J is a face of 

cs since I{x}UJl<-m. Therefore  {x} is a face of ~s i.e., 

x E vert cs (V, 2m )/J. [] 
Using Lemma  4.6, we obtain a simplified version of Theorem 4.5 for the case 

] < m :  

TrmOREM 4.7. If  v > 2m + l and j <m,  then S C V \ J  is a missing face o[ 
cs 2m)/J iff S is a union of m - j  + 1 separated chains of V\J .  

The last theorem enables us to determine the number  of missing faces of 

cs for v > 2 m  + 1 and j < m, as follows: 

COROLLARY 4.8. If  V > 2m + 1 and ] < m, then 

imf(qg(V,2m)/j)l = v - 2 j  ( v - m - j - l )  
v - m  - j - 1  m - j + l  " 

PROOF. By L e m m a  4.3, the number  of the chains in V \ J  is v - 2j. Consider 

those o -  2j cyclically ordered chains as a cyclically ordered set V'  of v -  2j 
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elements. By Theorem 4.7, a subset S'  of V' induces a missing face of 

~ ( V , 2 m ) / J  iff IS'I = m - j  + 1 and S'  is separated in V'. 

The number of separated k-subsets of a cyclically ordered n-set is 

(see [13, p. 1981). By substituting k = m - j + l ,  n = v - 2 j  we obtain the 

required result. []  

We now arrive at the main goal of the present section. The question under 

consideration is the following: To what extent can V, J and m be reconstructed 

from cO(V, 2m)/J  (assuming, as usual, that J is separated in V)? 

THEOREM 4.9. If v >= 2m + 3 and j < m, then V, J and m are essentially 

determined by the quotient complex ~r 2m )/J, in the following sense : 

I[~(V~,2m~)/J~ ~- ~(V2,2m2)/J2, where I V, I = v, =>2m, +3 ,  O<=lJ, I =j ,  <m,, 

and J, is a separated subset o[ V, [or i = 1, 2, then m l = m2, v~ = v2, j, = j2, and 

there is an isomorphism ~p : C(VO--> C(V2) such that J2 = ~(J~). (I[ V, = 1,'2, "this 

means that J2 is the image of J~ under a rotation or reflection of C(V~).) 

PROOF. Let ~ =  ~(V~,2ml)/Ji .  By Lemma 4.6, v e r t S ( =  V~\J~. We will 

show that the chains induced by J~ in V~ \ J~, as well as the cyclic order  of those 

chains in C(V~),. are determined by the structure of X, i.e., by properties of 

which are preserved under isomorphism. 

First note that by Theorem 4.7, every missing face of ~ is the union of 

m ~ - jl + 1 separated chains in VI \ Jr. m 1 - j, + 1 _-> 2, since jl"< m i. The  number 

of chains in V~\J1 is v l -2 j~ ,  by Lemma 4.3. Since vl_->2m~+3, we have 

v~ - 2jl --> 2(ml - jl + 1) + 1. Therefore,  for every two chains R~, R2 in V~\J~ 

there is a missing face of ~ which contains RI and misses R2. Moreover,  if RI 

and R2 are not adjacent in C(V0,  then there is a missing face of ~ which 

contains both R1 and Rz. 

Now define an equivalence relation -- on vert ~" as follows: a --- b itt every 

missing face of ~ either contains both a and b or misses both. From the above 

considerations it follows that the equivalence classes of vert ~ with respect to - 

are precisely the chains of V1\J~. Moreover,  two chains R~, R2 are adjacent in 

C ( V  0 iff no missing face of 5/" contains R1LI R2. Thus, the chains of V~\J~ and 

their cyclic order in C(VI) are determined by ~.  

The numbers mr, v~, jj are also determined by ~,  since the maximum 

cardinality of faces of ~ is 2 m ~ - j l ,  I v e r t ~ l  = v~-j~, and the number of 

equivalence classes of vert ~ with respect to -= is v~-  2]1. 
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If X ' =  ~(V2,2m2)/J2 is isomorphic to YF, then, by the above considerations, 

ml = m2, v~ = v2, j~ = j2, and there is a 1 - 1 correspondence between the chains 

of Vl\J1 and the chains of V2\J2 which preserves size and adjacency. Such a 

correspondence is clearly induced by an isomorphism r : C ( V , ) ~  C(V2) which 

maps J1 onto J2. 

Note that the proof is constructive, and provides an effective procedure for 

producing a listing of m, V and J from a listing of c~(V,2m)/J, when v => 2m + 3 

and j < m. []  

In view of the last theorem, it is interesting to note that the order of the 

vertices within each chain of V \ J  is not determined by qC(V,2m)/J. 

LEMMA 4.10. Under assumption (4.1), every permutation ~o of V \ J  which 
maps chains onto chains and adjacent chains onto adjacent chains induces an 
automorphism of cO(V, 2m )/J. 

PROOF. Let X = cr If r maps chains onto chains and preserves 

adjacency of chains, then q~ maps the set of missing faces of Y( relative to V \ J  
onto itself, since those missing faces are exactly all the unions of m - j  + 1 

pairwise non-adjacent chains of V\J.  Therefore  r maps ~ onto Y(, since S E 

iff S C V \ J and no subset of S is a missing face of Y{ relative to V \ J. [] 

Combining the last lemma with a part of Theorem 4.9 we obtain: 

THEOREM 4.11. If V >-- 2m + 3 and j < m, then a permutation of V\J  induces 

an automorphism of cr )/J iff it maps chains onto chains and adjacent 

chains to adjacent chains. 

Note that for J = ~ Theorem 4.11 reduces to Theorem 3.8. 

In the sequel we regard the automorphisms of a complex (or a graph) 50 as 

permutations of vert 50 which map faces (or edges) of 50 onto faces (or edges, 

respectively) of 50. Under  this convention the same permutation q~ of V may be 

an automrophism of several different structures on V. We denote  by Aut ( ~ )  the 

group of automorphisms of ~. 

Theorem 4.11 enables us to describe the automorphisms of cr as 

follows. Define 

Aut (C(V) , J )  = {q~ E Aut C ( V ) :  ~0(J) = J}, 

and for q~ E Aut(C(V) ,J ) ,  denote by q~ Iv\, the restriction of q~ to V\J.  Also let 

5f (V\J )  be the group of all permutations of V\J.  Then: 

TrmoREM 4.12. Suppose v >= 2m +3 and j < m. Let R1," ' ,Rv-2j be the 
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chains induced by J in V\J .  ((R1,.. . ,Rv_2s) is a partition of V\J.)  Then 
Au t (~ (V ,2m) /J )  = A �9 B, where 

A = {~ Iv\s: ~ E Aut(C(V) ,J)} ,  

B ={~ESC ' (V \ J ) :O(R , )=R ,  for l<-_i<=v-2j}. 

Therefore IAut(qg (V,2m )/J)l = IAut(C~(v),J)l �9 II~s_~Sl R, I[. 

PROOF. First note that IAI= [mut(C(V),J)[, since every automorphism of 

C(V)  is determined by its action on V \ J  (since I V \ J I  >= 3). It is also clear that 

I B I = Ilrz~sl R, I!. 

If ~ U Aut (C(V) , J )  and ~b E B, then q~ and ~b map chains onto chains, and so 

do ~ Iv,, and ~,,,, -,/,. Therefore  ~ Iv\s" 6 E Aut(~C(V,2m)/J), by Theorem 4.11. 

This shows that A -B C Aut (~(V ,2m) /J ) .  
Denote  by D the graph whose vertices are the chains R1, �9 �9 Ro_2j, where R~ 

is joined by an edge to R s iff R~ and Rs are adjacent chains. D is a cycle of length 

v - 2/'. (Note that v - 2j _--- 2rn + 3 - 2(m - 1) = 5.) 

Every automorphism to of ~(V,  2rn)/J induces an automorphism 03 of D, 

defined by o3(R,) = to(R,), which preserves lengths of chains, i.e., 1 03(R,)1 = IR, I 

for all i. Every such length-preserving automorphism o3 of D can be "built up" 

to an automorphism ~ E Aut (C(V) ,J ) ,  such that tp(R,)= 03(R,)= t o (R , ) fo r  

R, E v e r t D .  Let qS=~lvxs, ~b=f f - ' . t o .  Then ~ ( R , ) = t o ( R , ) E v e r t D  for 

R, E vert D, and therefore O(R,) = R, for all i. Thus to = ff �9 ~b, ~5 E A, ~b ~ B. 

If to = ~ -  ~b~ = tp2" ~b2, where ~pl, ~2 ~ A, ~b~, ~b2 E B, then to(R,) = tp~(R,) = 

~p2(R~) for all i. Thus q~-~" ~2 is the restriction to V \ J  of an automorphism of 

C(V)  which preserves J and maps every chain onto itself. Such an automor- 

phism must be the identity, since the number of chains, v -  2j, is at least 3. 

Therefore  ~ = ~2, which implies ~b~ -- ~b2. 

We have shown that every to E Aut (~(V,  2m) / J )  is uniquely expressible as a 

p roduc t~  . ~ b , ~ A , ~ B .  There fore lAu t (qg(V ,2m) /J ) l= lA l . IB  I. [] 

We conclude this section with an explicit description of the facets of 

~(V ,2m) / J  (v >-_ 2m +3,  j < m)  in terms of the chains of V\J .  

THEOREM 4.13. Suppose v >= 2m + 3 and j < m. Let R1, . .  ", Rv-2s be the 
chains induced by J in V\J ,  arranged in their natural cyclic order on C(V).  For 
S C V\J ,  define S * = { i  :R, CS}. Then S E max ~ (V ,2m )/J iff: 

(a) ISI = 2m - j ,  

(b) I S*l = 2(m - j),  

(c) / R , \ S I = I  f o r i ~ S * ,  
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(d) S* satisfies Gale's Evenness Condition with respect to the circuit 
C({1,- . . ,  v - 2j}). 

PROOF. First note that (b) follows from (a) and (c). Indeed, if S satisfies (a) 
and (c) then 

v - 2 )  

v - Z m  = ( v - j ) - ( Z m - j ) = l V \ J \ S [ =  • IR,\SI 
i = l  

= ~, IR, ISI = • l = v - 2 j - I S * l ,  
i ~ S *  ~ S *  

hence I S*I = 2(m - j ) .  

Similarly (a) and (b) imply (c), as follows: from (a) and (b) we obtain 

v - 2 /  

v - 2 m  = ( v - j ) - ( 2 m - j ) = [ V \ J \ S l =  ~ IR,\SI 
i=1  

= ~" I R , \ S l > = v - 2 j - I S * l = v - 2 j - 2 ( m - j ) = v - 2 m .  
ig~S* 

Thus we have equality throughout, and [R~ \ S I = 1 for all i ~  S* 

Now assume S E max c~(V, 2m )/J. Then clearly IS [ = 2m - j. Also, S includes 

no missing face of ~(V, 2m)/J, and is maximal with respect to this property. 

Since every missing face of ~ (V, 2m )/J is a union of complete chains (Theorem 

4.7), S misses at most one vertex in each chain R~. This proves (c), and (b) 
follows. 

Define V * = { 1 , 2 , . . . , v - 2 j } .  Then S * C V * ,  I S * l = 2 ( m - j )  , and from 

Theorem 4.7 it follows that S* does not include any separated (m - 1  + 1)-subset 

of V*. Thus S* contains no missing face of the cyclic complex ~(V*,  2(m - j ) )  

(see Theorem 3.4), hence S* E max ~(V*,  2(m - j)), and therefore S* satisfies 

Gale's Evennes Condition with respect to the circuit C(V*) (see Definition 3.1). 

Conversely, if S C V \ J  satisfies conditions (a)-(d), then S* does not include 

any separated ( m - j  + 1)-subset of V*, and therefore S does not include 
m - j  + 1 separated chains of V\J. Thus, by Theorem 4.7, S E ~(V, 2m)/J, and 

since I S I = 2m - j, S E max %~ (V, 2m )/J. [] 

5. Direct sums and the structure of cs (V, 2m )/J (V ~< 2m + 2 or j = m )  

The main purpose of this section is to show that (under the notational 

convention (4.1)) if j = m or v < 2m + 2 then ~(V,2m)/J is isomorphic to the 

boundary complex of the direct sum of (one or more) simplices (Theorems 5.6, 

5.7), whereas if j < m  and v >2m +3 then cs 2m)/J is irreducible with 
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respect to direct sums and is not isomorphic to the boundary complex of a 

simplex (Theorem 5.12). 

DEFINITION 5.1. Let ~ and b e be nonempty  abstract simplicial complexes, 

vert 5~ n vert ~ = 0 .  The direct sum ~ @ ~g is: 

~ @ ~ g = { D U E : D E ~ , E E ~ g } .  

The direct sum of more than two simplicial complexes is defined similarly. 

Capital script letters are used in this section exclusively to denote  nonempty  

abstract simplicial complexes. 

The following properties of direct sums are easily verified: 

vert ( ~  @ be) = vert ~ U vert be. 

m a x ( ~  @ be) = {D U E : D E max ~,  E E max ~}. 

(*) m f ( ~  @ ~)  = mf ~ U mf ~. 

(**) If D C vert ~,  E C vert ~, then 

(~ @ ~;)/(D U E) = (~ /D)@(* /E) .  

In particular, if E E max be then 

(~  @ be)/E = ~. 
Also, 

(***) = {S ~ ~ @ ~ : S Cver t  ~}. 

Thus we see that ~ is both a subcomplex and a quotient of ~ @ ~'. 

We say that ~ is a factor of ~ if ~' = ~g �9 ~ for some ~.  A factor of ~' is 

determfined by its set of vertices (see (***)). If 0 #  C C v e r t  ~ and ~ = 

{S ~ ~ : S C C} is a factor of ~', then every missing face M of ~ is either included 

in C or disjoint from C, because of (*). Moreover,  in that case 

m f ~  ={MC C : M E  mf ~'}. 

We say that be is irreducible if ~ ' #  {0}, and b ~ has no factors other than ~ itself 

and {~3}. 

DEFINITION 5.2. Suppose ~ # { O } .  Define an equivalence relation --= on 

vert be as follows: x --- z iff there are vertices x = yo, y~, '" ", y, = z (t => 0) and 

missing faces U~, . - . ,  U, of ~, such that {y~_~, yl} C U, for 1 _-< i -< t. Denote  by 

W,, -. -, W, the equivalence classes of vert ~ with respect to -=. 
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If U E mf ~, then clearly U C W~ for some i. If v is a vertex of ~' that  does not 

belong to any missing face, then {v} = W~ for some i. 

F rom the remarks  preceding Definition 5.2 we see that every factor  ~ of ~ has 

the form ~r = {S E ~ : S C C}, where C is a union of some of the equivalence 

classes W t , - . . ,  W,. In particular, ~' is irreducible if s = 1. 

Now we turn our  at tent ion to direct sums of convex polytopes.  

THEOREM 5.3. Let  V t , ' "  ", Vs be linear subspaces o f  Rd, such that R d = 

V~ ~) . �9 �9 0 V,. For 1 <= i <- s, let Ki be a convex polytope in Vi which contains the 

origin as an ir.terior point, relative to V ,  Let  K = c o n v ( K 1 U  . . .  U Ks). Then  

~ ( K )  = ~ ( K , ) @ . . .  (~ ~ (K~). 

PROOF. If d = 0 ,  then K = K ~ = { O }  and ~ ( K ) = ~ ( K ~ ) = { O }  for all i. If 

d > 0, and dim V~ = 0 for  some i, then the omission of Ki will affect nei ther  K 

nor  the direct sum ~ (KI) ( ~ "  �9 ~ ~ (Ks). Assume  therefore  that dim V~ > 0 for 

all i. 

It is easily checked that K is a d -po ly tope ,  0 E int K and vert K is the disjoint 

union of vert K~, for  1 ~ i <- s. 

We  must show that ~ (K)  consists exactly of all unions F1 U �9 �9 �9 U F,, where  

F ~ E ~ ( K ~ )  for l<=i<=s. If F E ~ ( K ) ,  then there is a linear functional  

f : R d ~ R s u c h t h a t f ( x ) = l f o r x ~ F , f ( x ) < l f o r x E v e r t K \ F .  For  l =< i =< s, 

let F~ = F n vert Ki. Then  F~ E ~(K~),  and F = F~ U �9 �9 �9 U F,. 

Conversely,  if F ~ E ~ ( K i )  are given for l ~ i = < s ,  let f ~ : V ~ R  be linear 

functionals such that f~ (x )=  1 for  x ~ F~, f ~ ( x ) <  1 for x E v e r t  K~\F,. Let  

)~ : R d ~ R be linear functionals,  such that )~ (x) = f ( x )  for x ~ V~, )~ (x) = 0 for 

x E Vj, j #  i. Def ine f = f ~ + . . -  +)~. Then  f ( x )  = 1 for x E F~ U . . .  U Fs, f ( x ) <  1 

for x E (vert K~\F~) U . . .  U (vert Ks \F~) = vert K \ ( F ~  U . . .  U F,). There fo re  

F, U . . . U F~ ~ ~ ( K ) .  [] 

T h e o r e m  5.3 justifies the following definition: 

DEFTNmON 5.4. K is the (geometric)  direct sum of the poly topes  K1, �9 �9 Ks, 

if K = c o n v  (K~ U .  �9 �9 U Ks), n ~=1 relint Ki ~ ~ ,  and dim K = 

dim K~ + .. �9 + dim K,. 

F r o m  the condit ions of  Definit ion 5.4 it follows that n ~  relint K~ consists of a 

single point  z , 0 ~  relint(K~ - z )  for 1 -< i =< s, K - z = c o n v  U~=~(K~ - z) ,  and 

a f t ( K - z )  is the direct sum of the linear spaces a f t ( K ~ -  z) ,  i = 1 , 2 , . . - ,  s. 

The  next result will be  useful for the classification of the quot ient  polytopes  

C(v,  2 m ) / J  in the cases v =< 2m + 2 or  I J I  = m, which are except ions to the 

general  case t rea ted  in Section 4. 
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THEOREM 5.5. A simplicial polytope K is combinatorially equivalent to a direct 

sum of simplices iff the missing faces of K are pairwise disjoint. 

PROOF. (a) If T is a simplex, then mf T = {vert T}. Suppose  K is the direct 

sum of  simplices T1,' . ' ,  T,. Then  ~ ( K ) =  ~3(T1)E)'" . ~ )  ~ ( T , ) ,  and m f K  = 

mf 7"1U �9 �9 �9 U mf 7", = {vert T~,. �9 vert  T,}. The  sets vert  r l , ' "  ", vert  T, are 

clearly pairwise disjoint. 

(b) SuppoSe m f K  = { U I , . . . ,  U,}, and the sets U~ , - . . ,  U, are pairwise dis- 

joint.  Then  vert  K = U~ U-  �9 �9 U U, (see L e m m a  2.3), and K is combinator ia l ly  

equivalent  to the geometr ic  direct sum of simplices T 1 , . - ' ,  T,, of  d imensions  

I U l  I - 1 , . . . ,  I U, I - 1, respectively (see end of Sect ion 2). [ ]  

Now we turn back to the cyclic poly topes  C(v, 2m), where  v =< 2m + 2. 

C(2m + 1 , 2 m )  is a simplex, and all its quot ients  are simplices. (If T is a 

d-s implex and F E ~ ( T ) ,  then ~ ( T ) / F  is the boundary  complex  of the 

(d - [ F / ) - s implex  conv (vert T \ F) . )  

C(2m + 2, 2 m )  is the direct sum of two m-simplices T~, 7'2 (see [6, p. 98]). 

More  precisely, if the vert ices of C(2m + 2, 2m)  are x~ , . . - ,  x2m.2 and appear  in 

this o rde r  on the momen t  curve,  then 

T1 = cony{x21_1 : 1 -< i =< m + 1} and 7'2 = conv{x2~ : 1 =< i _-< m + 1}. 

By T h e o r e m  5.3, the p roper  faces F of C(2m + 2, 2m)  are exactly all the  sets 

F~UF2, where  F~E ~(T1) ,  F 2 E  ~(T2) ,  and by (**) we have 

~J (C(2m + 2, 2m )/F) = ~ (C(2m + 2, 2m ))/F = ~ (T~ ~ T2)/F 

= (~  (T,) ~ ~ (T2))/(F~ U F2) = ~ (T~)/F~ ~ ~ (T2)/F~. 

Following [6, p. 53], we use the symbol T d to deno te  a d-simplex.  Writing 

T a ~ T e, we assume that the  relat ive interiors of T d and T e have exactly one  

point  in common.  Thus  T d ~  T e, even if d = e, unless d = e = 0. 

We thus obtain:  

THEOREM 5.6. The quotients of C(2m + 2, 2m)  are, up to isomorphism, ex- 

actly the polytopes T ~ ~ T ~, where 0 < a <-_ [3 <- m. 

Note  that  T ~ �9 T~ = T~ if a = 0. The  number  of distinct types of quot ients  of 

C(2m + 2,2m) is l + 2 + - . - + ( m + l ) = � 8 9  

Next  we re turn to the quot ients  ~ (V, 2m)/J ,  where  m _-> 1, I V I = v _-> 2m + 3, 

J is a separa ted  subset of V, and I JI  = j = m. H e r e  the main result is: 

THEOREM 5.7. Let V, m, J be as above, and let V1, . . . ,  V, be the chains of 
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lengths > 1 inducedbyJ in  V \ J .  I f  l V~I= 1 + a, for 1 <- i <- t, then ~ ( V ,  2m) /J  ~- 

~ ( T ~ , ~ . . . ~ ] ~  T~ 

PROOF. Let 5 ( =  ~ ( V ,  2m)/J. By Theorem 4.5, the missing faces of 5( 

relative to V \ J  are precisely the chains induced by J in V \ J .  By the remark that 

follows Definition 4.4, the missing faces of 5( relative to V \ J are the singletons 

{x}, where x ~ V \ J \ v e r t  5(, and the "ordinary"  missing faces of 5(. It follows 

that v e r t s ( =  VI U . . .  U V,, and mfS~ = {V1,.--,  V,}. By Theorem 5.5 and its 

proof, 5( is isomorphic to the boundary complex of a direct sum of simplices 

T ~, ~ . . .  ~) T ~,, where a, = I V~ I - 1 for 1 -< i =< t. [] 

REMARK. The above proof holds for v => 2m + 2. The theorem is true even 

for v = 2 m + l .  

The next theorem will enable us to check the truth of the statement 

"v  =>2m +3  and /' < m "  by looking at the quotient ~ ( V , 2 m ) / J .  This is the 

strengthening of Theorem 4.9 that was promised at the beginning of Section 4. 

(See also Theorem 5.12 below.) 

THEOREM 5.8. Let V, v, J,/, and m be as in (4.1). Let ~ = qC(V,2m )/J. Then 

the missing faces of 5( are pairwise dis/,oint iff v <= 2m + 2 or/, = m. 

PROOF. (a) If v < 2m + 2 or /, = m, then ~ is isomorphic to the boundary 

complex of a direct sum of simplices, and the missing faces of ~ are pairwise 

disjoint. See Theorems 5.5, 5.6, 5.7. (This includes the case where ~ has only 

one missing face, and is isomorphic to the boundary complex of a simplex.) 

(b) Suppose v _-> 2m + 3 and/ '  < m. Then the missing faces of 5( are exactly 

the unions of m - / ,  + 1 separated chains of V\J ,  by Theorem 4.7. There are 

altogether v - 2 /  chains, by Lemma 4.3. Since m - / ,  + 1 > 1  and v - 2 / ,  > 

2(m - / ,  + 1), every chain belongs to at least two missing faces, and thus the 

missing faces of 5( are not pairwise disjoint. [] 

In Theorem 4.12 we determined the automorphisms of c~(V,2m)/J  (J 

separated, IJ l=/ , )  for the case I V [ =  v =>2m +3,  i < m .  The corresponding 

result for the case v --- 2m + 2 or ] = m is trivial. We include it here for the sake 

of completeness. 

THEOREM 5.9. Suppose K is the direct sum of simplices T1 , "  ", T,. Then 

v e r t K  = I,.Ji~lvert T~, m f K  = {vert T~ : 1 <= i <= t}. The automorphisms of ~ ( K )  

are the permutations of vert K which preserve mfK.  Therefore IAut ~ ( K ) I  = 

II7=~ ((j + 1)!) h," hi!, where hi is the number of/ .-dimensional simplices among 

T , , . . . ,  T,. 



118 A. ALTSHULER AND M. A. PERLES Israel J. Math. 

Theorem 5.7 enables us to enumerate  the types of quotients ~ ( V , 2 m ) / J  

where J is a separated m -subset of V. (The corresponding enumeration probfem 

for J JI = ] < m is less trivial, and will be solved in a later part of this work.) 

Suppose c~ ( V, 2m )/J  = ~ ( T ~, ~)  . . . ~)  T ~, ). Equating dimensions on both sides 

we obtain: 

aq+ . . .  + or, = 2 m  - I J l = m .  

For the number of vertices we get: 

f o (C~(V ,2m) / J )=  (c~1+ 1 ) + - - .  + (t~, + 1)= m + t_-< v - ]  = v -  m. 

Hence t =< min (m, v - 2m). 

Conversely, it is clear that for every sequence t ~ , . . . ,  ct, of positive integers 

such that a~ + �9 �9 �9 + a, = m and 1 _-< t =< v - 2m there is a separated m -subset J 

of V such that ~ ( V ,  2 m ) / J  ~ -~8 (T  ~, ~ ) . . .  ~ )T~ , ) .  (If V = {1, 2 , . . . ,  v}, take 

J = J I U . . . U J , ,  w h e r e J i = / ~ ( 2 a ~ + l ) + 2 v : a - - < v - < a ' }  " ) t ~ = l  

Hence: 

THEOREM 5.10. The number  o f  different combinatorial types o f  quotients 

cr (V,  2m )/J, where J is a separated m -subset o f  V and J v I = v >= 2m + 3, equals 

the number  o f  unordered partitions o f  m into at most  v - 2m positive integers. I f  

v >= 3m, this is the number  p ( m )  o f  all Unordered partitions o f  m into positive 

integers. 

The function p ( m  ) is well-known in combinatorics and number theory, and is 

asymptotic to (4m X/3)-~exp(Tr~/2m-~). (See [8, sections 4.1, 4.2].) 

The next result follows easily from Theorem 3.5, Theorem 5.6 and the proof of 

Theorem 5.7. The proof is left to the reader. 

THEOREM 5.11. Every  direct sum o f  simplices is isomorphic to a quotient 

polytope o f  a cyclic polytope. In fact, i f  a 1, " " ", oe, are positive integers, t >= 1, the 

T ~' ~ ) . . .  ~)  T ~, is isomorphic to a quotient polytope o f  C(v ,  2m ) iff 

either v >= 2m + t and  m >= al + �9 �9 �9 + a, (Theorems 5.7 and 3.5); 

or t <= 2, v = 2m + 2 and m >- max (a l , .  "', t~,) (Theorem 5.6); 

or t  = l,  v = 2m + l and  2m >- al  (trivial). 

In this section we saw that if Y( = ~ ( V , 2 m ) / J ,  where V, m, J are as in (4.1), 

then ~ is isomorphic to the boundary complex of a simplex or of a direct sum of 
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simplices itt v _-< 2m + 2 or j = m. We conclude the section by observing that if 

j < m and v => 2m + 3, then 5( is irreducible. 

THEOREM 5.12. Using the notations of Theorem 5.8, if j < m and v >= 2m + 3, 

then 5( is irreducible, and is not isomorphic to the boundary complex of a simplex. 

PROOF. (a) From the considerations in Part (b) of the proof of Theorem 5.8 it 

follows that vert 5((-- V \ J )  cannot be split into two non-empty sets W~, W2, 

such that every missing face of Y( is included in W1 or in W2. (The union of any 

two nonadjacent chains of V \ J  is included in a missing face of 5~. If C1, (?2 are 

adjacent chains, then there is a third chain not adjacent to C~, nor to C2, since 

v - 2/' _-> 5.) Therefore  5( is irreducible. (See the remarks following Definition 

5.2.) 

(b) vert 5( = V \ J  by Lemma 4.6. Therefore  5( is isomorphic to the boundary 

complex of a (2m - j ) - p o l y t o p e  K with v -  j vertices, and v - j  = 2m - j  + 3. 

6. Alternative constructions of quotients of cyclic polytopes 

In this section we show how to obtain the quotients of cyclic polytopes from 

lower-dimensional cyclic polytopes by a process that can be described as 

"expansion" or "vertex-splitting". The construction is due to Sch6nwald [14]. 

We outline a direct description of this construction (Theorem 6.4), and also an 

indirect one, using Gale-diagrams. 

DEFINITION 6.1. Let K C R  d be a k-polytope, and let A C R  d be an r- 

simplex, such that aft K O aft A consists of a single point p, p E K O relint A. 

Let K '  = conv(K U A). Then we say that K '  is obtained from K by (r + 1)- 

splitting at p. 

Note that if p E relint K, then K '  = K �9 A. 

THEOREM 6.2. Let K, k, A, r, p and K '  be as in Definition 6.1. Assume 

moreover that K is simplical, that k >= 1 and that p E vert K. Then 

(1) d i m K ' =  k + r; 

(2) vert K '  = (vert K \{p}) U vert A; 

(3) if V C vert K\{p} ,  W C v e r t A ,  then V U W E ~ ( K ' )  iff 

either W ~  vert & and V ~ ~ (K)  

or W = v e r t A a n d  V U { p } E ~ ( K ) ;  

(4) K'  is a simplicial polytope ; 
(5) if V C vert K\{p} ,  W C v e r t A ,  then V O W E mk K'  iff 

either W = 0 and V E mf K 

or W = vert A and V U {p } ~ mf K. 
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PROOF. (1) Obvious. 

(2) This is a special case of (3). 

(3) The proof is easy, and is left to the reader. (A proof of (3) may also be 

found in [14, pp. 24-26].) 

(4) This follows immediately from (3), since K is assumed to be simplicial. 

(5) This follows directly from (3). The detailed verification fails naturally into 

a number of cases. The reasoning in the different cases is similar. We shall 

describe only one case. Suppose V U W ~ mf K' ,  where V C vert K \ {p}, W = 

vert A. Then V U { p } ~  ~ ( K ) ,  by (3). If w E W, then (W\{w})U V E  ~ ( K ' ) ,  

hence V ~ ~ ( K ) ,  by (3). If v ~ V, then W U (V\{v}) E ~ (K'), hence (V/{v}) U 

{p}E 9~(K), again by (3). It follows that V U{p}E mfK. The remaining parts 

of the verification are even simpler, and are left to the reader. [] 

The following corollary is a useful reformulation of Theorem 6.2, part (5). 

COROLLARY 6.3. Let K, A, K' be as above. Define a function 
f:vertK'---~vertK as follows: f ( x ) = x  for x E v e r t K \ { p } ,  f ( x ) = p  for 
x ~ve r tA .  Then m f K ' = { f - l ( M ) : M E m f K } .  

Suppose K is a simplicial k-polytope, vert K = {p~,..-,p,} (t = fo(K)). Let 

K = Ko, K~,. �9 K, be a sequence of polytopes, such that each K~ (1 _--- i = t) is 

obtained by r~-splitting of K~-I at pi (r~ -> 1). (Note that pi ~ vert Ki-l.) Then K, is 

a simplicial polytope, dimK,=k+Y.~=~(r~-l),  and there is a function 

f : ve r tK , -*ver t  K, such that If-~(p,)l = r~ for 1 _-<i= < t, and 

(*) mf K, = {f-~(M) : M E mf K}. 

Thus, the structure of K, does not depend on the given ordering of vert K, and 
the splitting at the different vertices of K can also be done simultaneously. We 

say that K, is obtained from K by r,-splitting at p,, for 1 =< i =< t. 

Now we shall see how a quotient of a cyclic polytope can be obtained by 

splitting vertices of a lower dimensional cyclic polytope. 

TrmORE~ 6.4. Suppose ~ ' =  ~(V,2m)/J,  where V and J are as in (4.1), 

I VI = v > 2m + 1, IJI = j < m. Let R , , . . . ,  R~-2j be the chains induced by J in 
V\J,  arranged in their natural cyclic order on C(V). Let K be a cyclic 
2(m -j)-polytope with v - 2 j  vertices x~,.. . ,  x~_2j, arranged in this order on the 

moment curve, and let K' be obtained from K by I R, I-splitting at x,, for 
l<=i<=v-2j. Then ~ ( K ' ) - ~ ' .  

PROOF. Let X, be the set of vertices of K '  that arises from the I R, I-splitting 

of K at x, (1 =< i _-< v - 2j). Then IX, I = IR, I, and vert K '  is the disjoint union of 
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X1,"' ,Xo-2j.  Let ~0 be a bijection of v e r t K '  onto v e r t ~ ' ( =  V \ J  = R 1 U . . .  U 

Ro-21) which maps X~ onto R, (1 < i =< v - 2/'). In order to show that ~0 is an 

isomorphism between ~(' and ~ (K'), it suffices to check that ~0 maps mf K '  onto 

mf ~{' (Theorem 2.4). The missing faces of 5~' are precisely all the unions of 

m - j  + 1 separated chains R, (Theorem 4.7). The missing faces of K '  can be 

described as follows. Define jr : vert K'---~ vert K by jr(y) = x~ for y E X~. Then, 

by (*), mf K '  = {jr-~(M) : M E mf K}, and jr-~(M) = U{x ,  : x, E M}. Since the 

missing faces of the cyclic 2 ( m - j ) - p o l y t o p e  K are precisely the separated 

(m - j  + 1)-subsets of {xl , - . - ,  x~_2j}, it follows that ~0 (mr K')  = m f ~ ' .  []  

REMARKS. (a) In the above proof, we have used missing faces in order to 

show that ~0(~(K' ) )=  ~ ' .  Instead, we could have used the description of the 

facets of 5(' in Theorem 4.13, and the description of the facets of K '  that follows 

from Theorem 6.2, part (3). 

(b) In Theorem 6.4 we assumed that j < m. If j -- m, then ~ '  is isomorphic to 

the boundary complex of a direct sum of simplices. A direct sum of t simplices 

A1, �9 �9 A, can be thought of as obtained from a t-fold point p = pl = p2 . . . . .  p, 

by [vertA, I-splitting at p, for 1 =<i= < t. The t-fold point p is, in a sense, a 

"0-dimensional cyclic polytope with t vertices". 

(c) The arguments used in the proof of Theorem 6.4 actually yield also the 

converse of that theorem, namely: If K '  is obtained from a cyclic 2k-polytope K 

with t vertices x~,. �9 x, (t > 2k + 1 _-> 3) by r,-splitting at x, (1 < i _-< t), then 

(K')  is isomorphic to ~(V,  2(k + j))/J, where j = E',=~ (r~ - 1), I VI = t + 2j, and 

J is a suitable separated j-subset of V. 

(d) If K '  = conv(K U A) is obtained from K by r-splitting at a vertex p, and 

K" is obtained from K '  by s-splitting at a vertex q of A, then K"  is obtained from 

k by (r + s - 1)-splitting at p. Conversely, every r-splitting of K can be obtained 

by a suitable succession of r - 1 2-splittings. 

(e) It follows that the class of quotients of cyclic polytopes is closed under the 

operation of splitting at a vertex. It is also closed under combinatorial equiva- 

lence and under the operation of passing to a quotient. Other  classes of 

polytopes closed under these operations are: 

(1) simplices, 

(2) direct sums of simplices, 

(3) simplicial polytopes. 

(f) Note that the operations of splitting at a vertex and direct sum commute in 

the following sense: If K = P ~) Q, K '  = P '  ~) Q and P '  is obtained from P by 

splitting at a vertex p, then K '  is obtained from K by the same splitting at p. 
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It follows that the class of quotients of cyclic polytopes is the smallest class that 

includes the cyclic polytopes and the d-octahedra (d = 0, 1, 2,. �9 �9 ) and is closed 

under 2-splitting at a vertex and under combinatorial equivalence. 

(g) Splitting is not a purely combinatorial operation. I.e., if K '  is obtained 

from K by splitting at a vertex, and K" is combinatorially equivalent to K' ,  then 

K "  is not necessarily obtained from a lower-dimensional polytope by splitting. 

Next we show that the operation of splitting K at a vertex is nicely reflected as 

a simple operation of "multiplying a vertex" in the Gale-diagram of K. It will 

follow (Theorem 6.9) that every simplicial d-polytope with d + 3 vertices is a 

quotient of a cyclic polytope. 

In the sequel we shall freely use the notation and results of [6, section 5.4] 

concerning Gale-diagrams. 

THEOREM 6.5. Le t  K be a polytope with t vertices p , , . . . ,  pt. Suppose K ' =  

conv(K td A) is obtained from K by (r + 1)-splitting at p,. Thus  

v e r t K ' = { p ~ , ' . ' , p t _ l ,  q t , ' . ' ,q t+,} ,  where {qt , . . . ,qt+,}=vertA.  

If  ~1 , ' "  ",/~,) is a Gale-d iagram of  K, then 

(Pl , . . . ,  pt-l, p, , . . . ,pt)  
r + 1 times 

is a Gale -d iagram of  K ' .  

LEMMA 6.6. Let  P = (p~, . . . ,p~)  be a sequence o f  (not necessarily distinct) 

points in R d. Let A = aff{p~,.. ",pt}, and let L C R d be an r-flat, such that 

A A L = {pt}. Let q,,--., q,+, be the vertices of  an r-s implex A in L that includes p, 

in its relative interior. I.e., pt = flgb + "" "+ flt+,q .... where fl, > 0 for t < i <-_ t + r 

and fit + " "  + fit+, = 1. I f  (ill, '" ",/~,) is a Gale- transform of  the sequence 

(pl, " " ", p, ), then ( i l l , '"  ", pt-1, fltp,, " " ", flt+,p, ) is a Gale- transform o f  the sequence 

p t  = (Pl," " ",p,-l, qt, '" ", q,+,). 

From this lemma it follows that if (ill, '" ",/~,) is a Gale-diagram of P, then 

(pl ,  ~176 ",pt--I, pt ,""  " ,p t )  

r + l'times 

is a Gale-diagram of P'. This includes the assertion of Theorem 6.5 as a 

particular case. 

PROOF OF LEMMA 6.6. Suppose dim A = k. By an affine dependence (a.d.) of 

P we mean a sequence ( a ~ , . . . , a t ) E R  t such that azp~+"'+a,p,=O, 
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al + �9 �9 �9 + a, = O. The set of all a.d. 's of P is a linear subspace of R '  of dimension 

t - k  - 1 .  

From the assumptions of the lemma it follows that 

dim aft {pl, �9 �9 -, p,_~, q , , . . . ,  q,+,} = dim aft (ALI  A) = k + r, 

and the dimension of the linear space of all a.d. 's of P '  is again t - k -  1 

( = (t + r ) -  (k + r ) -  1). It is easily checked that if ( a ~ , . . . ,  a,)  is an a.d. of P, 

then ( a z , . . . ,  a,_~, f l ,a , , . . . ,  fl,+ra,) is an a.d. of P ' .  Therefore,  if the columns of 

the matrix 

/ 01~1, 1 �9 . . O~l,t_k_l / 
DI  = 

O~t,, at ,  t--k--1 / 

from a basis of the space of a.d. 's of P, then the columns of the matrix 

fl,a,.,_k_l ] 

~t+rO~t, 1 [~t +r Ol . . . .  k l / 

form a basis of the space of a.d. 's of P ' .  We can choose DI  to be the matrix 

whose rows are precisely the vectors/~, , .  �9 of the given Gale- t ransform of P. 

In that case, the rows of D2 will be/~, , .  �9 p,_~,/3,/~,, �9 �9 ., /3,+,10,, and this sequence 

of vectors is the required Gale- t ransform of P ' .  []  

By repeated application of Theorem 6.5 we obtain the following corollary to 

Theorem 6.4 

COROLLARY 6.7. Using the notations of  Theorem 6.4, assume that 

(~ ,  �9 �9 ", ~-2~) is a Gale-diagram of  the cyclic polytope K ( = C(v  - 2j, 2(m - j))). 

Then 

( ~ . ' "  ", ~1,'" ", ~o-2j,'" ", ~o-2j) 
T 

rj times rv_2, times 

is a Gale-diagram of K ' .  

The analogue of Theorem 6.4 for the case j = m is contained in Remark  (b) 

above. The  reformulation of that remark in terms of Gale-diagrams runs as 

follows: 
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COROLLARY 6.8. Suppose K'  = TI ~])'" �9 G T, is a geometric direct sum (in the 

sense of Definition 5.4) of t simplices T~, and dim T~ = r~ - 1 > 1 for 1 <- i <- t. 

Then K'  has a Gale-diagram of the form 

", 

r, times r, times 

where ( ~ , . . . , p , )  is a Gale-diagram o[ a constant sequence 

(p,.. . ,p). 

t times 

Note that (ill,'" ",~,) is a Gale-diagram o[ a constant sequence iff ~ l , "  .,~, are 

unit vectors in R'-I  and 0 ~ int conv{/~l, �9 �9 

We conclude this section with a theorem of F. Hering [9, theorem 2.16 and its 

corollary on page 140]. 

THEOREM 6.9. Every simplicial d-polytope K with d +/3 vertices, 1 ~ /3  ~ 3, is 

a quotient of a cyclic polytope C(2m +/3, 2m). (m depends on K.) 

PROOF. The cases /3 = 1 and/3  = 2 are trivial. 

Let  K be a d-polytope with d + 3 vertices. By [6, page 109], K is combinatori- 

ally equivalent to a polytope K' with a contracted Gale-diagram G'.  G '  consists 

of an odd number 2/z + 3 points/~,, �9 �9 evenly spaced on the unit circle, 

( i - 1  i - 1  .2~r) say ' 
/~, = cos 2tz'~-'3" 2~r, sin 2# +---~ 

with positive multiplicities r~, . . . ,  r2,+3 (see, e.g. [6, fig. 6.3.2]). The  sequence 

G " =  ~, . . . , /~2, ,+3) without multiplicities is the Gale-diagram of a cyclic 

polytope C(2/z + 3,2/z) i f /z  > 0 ,  or of a triple point (p,p,p) if ~ --0. 

If /~ > 0 ,  then G' is a Gale-diagram of a polytope that is obtained from 

C(2/z + 3, 2/z) by splitting at vertices (Theorem 6.5), and such a polytope is a 

quotient of a cyclic polytope C(2m + 3, 2m) (see Remark (c) above). An easy 

calculation shows that m -- d - / z .  

If /z = 0, then G '  is a Gale-diagram of a direct sum of three simplices 

T"-~)T'2-~OT'3-~,  which is a quotient of C(2d+3,2d) ,  since d = 

rl - 1 + r2 -  1 + r 3  - -  1 (see Theorem 5.11). 

In both cases we showed that K is a quotient of C(2m + 3, 2m) for some m, 

-~d < < 2 = m  = d .  [ ]  
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REMARK. For d _-> 3 and /3 => 4, only a small minority of the simplicial 
d-polytopes with d +/3 vertices are quotients of cyclic polytopes. 

As in [6], denote by cs(d + [3, d) the number of combinatorial types of 
simplicial d-polytopes with d + [3 vertices, and let q(d +/3, d) be the number of 
those which are types of quotients of cyclic polytopes. Then it can be shown 
quite easily that q(d + [3, d) increases much slower than c~(d + [3, d) for fixed d 
(d _-> 3) and increasing/3, as well as for fixed/3 ([3 _-> 4) and increasing d. E.g., 
q(8,4)= 6, q(9,4)= 5, whereas cs(8,4)= 37 (see [7]), and cs(9,4)= 1142 (see 
[2]). 
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